
LTCE

SOFTWARE ENGINEERING LABORATORY

Experiment 1

Applications of Process Models & Packet Sniffer Case Study

Subject: Software Engineering

Course: Third Year CSE (IoT & CSBT)

College: Lokmanya Tilak College Of Engineering (LTCE)

University: Mumbai University

Academic Year: 2025-26

Group Members:

1. Raj Dubey - Roll No: 11

2. Yash Maurya - Roll No: 25

3. Piyush Kanojiya - Roll No: 23

Date: August 11, 2025

TABLE OF CONTENTS

Aim and Objectives 3

Part A: Applications of Various Process Models 4

 • Waterfall Model 4

 • Incremental Model 6

 • Evolutionary Model 8

 • Agile Model 10

Part B: Problem Statement – Packet Sniffer 12

Part C: Selected Process Model – Justification 16

Conclusion 20

References 21

AIM AND OBJECTIVES

🎯 Primary Aim:

To study and analyze various software process models and their practical applications in real-
world software development projects.

📋 Specific Objectives:

A. Study and document applications of various process models:
Waterfall Model
Incremental Model
Evolutionary Model
Agile Model

B. Develop a detailed problem statement for a selected case study (Packet Sniffer Software)
C. Analyze and justify the selection of the most suitable process model for the case study

🎓 Learning Outcomes:

Understand the characteristics and applications of different software process models
Develop skills in selecting appropriate development methodologies
Learn to justify technical decisions with proper reasoning
Gain experience in software project planning and analysis

PART A: APPLICATIONS OF VARIOUS
PROCESS MODELS

1. 🏗️ WATERFALL MODEL

Definition:

The Waterfall model is a linear sequential design process where progress flows steadily downward
through distinct phases: Requirements Analysis, System Design, Implementation, Testing,
Deployment, and Maintenance. Each phase must be completed before the next phase begins.

Process Flow Diagram:

1. Requirements Analysis

↓

2. System Design

↓

3. Implementation

↓

4. Testing

↓

5. Deployment

↓

6. Maintenance

Key Characteristics:

Sequential Phases: No overlap between phases
Documentation Heavy: Extensive documentation at each stage
Linear Progression: Cannot return to previous phases
Late Testing: Testing occurs only after implementation
Fixed Requirements: Changes are difficult and expensive

Real-World Applications:

Domain Example Projects Why Waterfall?

Defense
Systems

Missile guidance systems, Military
communication software

Strict security requirements,
Fixed specifications

Banking Core banking systems, ATM software
Regulatory compliance, High
reliability needs

Healthcare
Medical device software, Hospital
management systems

FDA approvals, Patient safety
critical

Aerospace
Flight control systems, Navigation
software

Safety critical, Extensive
testing required

Government
Tax processing systems, Voter
registration

Stable requirements, Audit
trails needed

✅ Advantages:

Simple and easy to understand
Well-defined project milestones
Good for projects with stable
requirements
Extensive documentation helps
maintenance
Quality gates at each phase
Easy to manage and track
progress

❌ Disadvantages:

No flexibility for requirement
changes
Late discovery of defects
Customer sees product only at the
end
High risk for complex projects
Cannot accommodate changing
technology
Long development cycles

2. 🔄 INCREMENTAL MODEL

Definition:

The Incremental model combines the linear sequential model with iterative philosophy. The software
is developed in incremental builds, where each increment adds new functionality to the previous
version, allowing early delivery of working software.

Process Flow Diagram:

Increment 1: Core Features

↓

Increment 2: Enhanced Features

↓

Increment 3: Advanced Features

↓

Continue until complete...

↓

Final Integrated System

Key Characteristics:

Multiple Increments: Software delivered in multiple working versions
Early Delivery: Core functionality available early
Parallel Development: Multiple increments can be developed simultaneously
Incremental Integration: Each increment builds upon previous ones
User Feedback: Early user input guides subsequent increments

Real-World Applications:

Domain
Example
Projects

Increment Strategy

ERP Systems SAP, Oracle ERP
Module-wise: HR → Finance → Inventory →
Sales

E-commerce Amazon, Flipkart
Catalog → Cart → Payment → Shipping →
Reviews

CRM Systems
Salesforce,
HubSpot

Contacts → Leads → Opportunities → Reports

LMS
Platforms

Moodle, Canvas
User Management → Content → Assessment →
Analytics

Payroll
Systems

Workday, ADP Employee Data → Salary → Tax → Reports

✅ Advantages: ❌ Disadvantages:

Early delivery of working
software
Easier testing and debugging
Lower initial delivery cost
Reduced risk of project failure
Customer feedback incorporation
Parallel development possible

Requires careful planning and
design
May need more resources
Integration complexity increases
Total cost may be higher
Architecture must support
increments
May lead to rushed increments

3. 🌱 EVOLUTIONARY MODEL

Definition:

The Evolutionary model allows software to evolve over multiple cycles of development. Each cycle
involves rapid development of a prototype, user evaluation, and refinement based on feedback. The
system grows and evolves through successive iterations.

Process Flow Diagram:

Initial Requirements

↓

Quick Design → Prototype → User Evaluation

↑ Refinement Cycle ↓

Feedback Analysis

(Cycle continues until satisfactory solution)

Key Characteristics:

Iterative Refinement: Continuous improvement through cycles
User-Centric: Heavy emphasis on user feedback
Rapid Prototyping: Quick development of working models
Flexible Requirements: Requirements evolve with understanding
Risk Reduction: Early identification of problems

Real-World Applications:

Domain Example Projects Evolution Strategy

AI/ML
Systems

Recommendation engines,
Chatbots

Model training → Testing →
Refinement

Gaming Video games, Mobile games
Core mechanics → Features →
Polish

Social Media Facebook, Twitter features
MVP → User feedback → Feature
evolution

Research
Tools

Scientific simulations, Data
analysis tools

Initial model → Experiments →
Improvements

Startups
MVP development, Product
validation

Concept → MVP → Market
feedback → Pivot

✅ Advantages:

Flexible and adaptive to changes
Continuous user involvement
Reduced development time
Better risk management
Suitable for research projects
Innovation-friendly approach

❌ Disadvantages:

Difficult to measure progress
May lead to scope creep
Requires experienced developers
Documentation may be
insufficient
Cost estimation is difficult
May become endless cycles

4. 🚀 AGILE MODEL

Definition:

The Agile model emphasizes iterative development, customer collaboration, and the ability to
respond quickly to changing requirements. It focuses on delivering working software frequently
through short development cycles called sprints (typically 1-4 weeks).

Agile Process Flow:

Product Backlog

↓

Sprint Planning

↓

Sprint (1-4 weeks) → Working Software

↓

Sprint Review Retrospective

(Cycle repeats for project duration)

Agile Principles:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

Real-World Applications:

Domain Example Projects Agile Framework Used

Web Development Netflix, Spotify, Airbnb Scrum, Kanban

Mobile Apps WhatsApp, Instagram, Uber Scrum, Lean

SaaS Products Slack, Zoom, Dropbox Scrum, SAFe

Fintech PayPal, Stripe, Robinhood Scrum, XP

E-commerce Shopify, WooCommerce Scrum, DevOps

✅ Advantages:

Quick delivery of working
software
High customer satisfaction
Adaptive to changing
requirements
Improved team collaboration
Continuous improvement
Reduced project risk

❌ Disadvantages:

Less emphasis on documentation
Requires experienced team
members
Needs active customer
involvement
May lead to scope creep
Difficult for fixed-price contracts
Can be overwhelming for large
projects

PART B: PROBLEM STATEMENT - PACKET
SNIFFER CASE STUDY

📡 Network Packet Analyzer for Educational Purposes

1. 🌐 Project Overview

In computer networks education, students and educators need practical tools to understand how data
flows across networks. A packet sniffer is an essential learning tool that captures and displays
network packets, helping users understand network protocols, troubleshoot connectivity issues, and
learn network security concepts.

2. 🎯 Problem Description

Educational institutions lack accessible, easy-to-understand packet analysis tools for teaching
network concepts. Existing tools like Wireshark, while powerful, can be overwhelming for
beginners. There's a need for a simplified, educational-focused packet sniffer that provides:

Educational Focus: Clear explanations of network protocols and packet structures
Simplified Interface: User-friendly design for students and educators
Real-time Monitoring: Live packet capture and analysis
Learning Features: Built-in tutorials and protocol explanations

3. 📋 Functional Requirements

Category Requirement Description

Core Features

Packet Capture
Capture packets from network interfaces
(Ethernet, WiFi)

Protocol Analysis
Decode common protocols (TCP, UDP,
HTTP, ICMP, DNS)

Real-time Display
Show captured packets in real-time with
basic details

Basic Filtering
Filter by IP address, port number, and
protocol type

Educational

Protocol
Explanations

Built-in help explaining each protocol and
header field

Packet Structure Visual representation of packet headers and

Features View data

Learning Mode
Guided tutorials for understanding network
concepts

Data Management

Save/Export
Save captured data to files (CSV, text
format)

Session
Management

Start, stop, and manage capture sessions

4. 🔧 Technical Requirements

System Architecture:

Network Interface Layer

↓ Raw Packets

Packet Capture Engine

↓ Captured Data

Protocol Parser Layer

↓ Decoded Headers

Filter Engine Layer

↓ Filtered Results

User Interface Layer

Performance Specifications:

Packet Rate: Handle up to 100 packets per second
Memory Usage: Maximum 256 MB RAM usage

Response Time: Display packets within 500ms of capture
Storage: Store up to 10,000 packets per session
Platform: Windows and Linux compatibility

5. 👥 Target Users

Computer Science Students: Learning networking concepts
Network Instructors: Teaching network protocols and analysis
IT Support Staff: Basic network troubleshooting
Hobbyist Developers: Understanding network communications

6. 📊 Success Criteria

Metric Target Value Measurement Method

Packet Capture Accuracy 95% of packets captured
Comparison with reference
tools

User Interface Usability 4/5 user satisfaction rating User surveys and testing

Educational Effectiveness
80% improvement in
learning

Pre/post knowledge
assessment

System Stability
Run continuously for 2+
hours

Stress testing and monitoring

Cross-platform
Compatibility

Works on Windows and
Linux

Testing on multiple
platforms

7. ⚠️ Project Constraints

Development Time: 10-12 weeks (academic semester)
Team Size: 3-4 students
Budget: Zero budget (open-source tools only)
Technology Stack: Python with standard libraries
Legal Requirements: Educational use only, no malicious capabilities

PART C: SELECTED PROCESS MODEL -
JUSTIFICATION

🎯 Selected Model: INCREMENTAL PROCESS MODEL

1. 📊 Model Selection Analysis

Comparison Matrix:

Criteria Waterfall Incremental Evolutionary Agile

Fixed Timeline Excellent Good Poor Fair

Modular Architecture Poor Excellent Fair Good

Early Testing Poor Excellent Good Excellent

Student Team Suitability Good Excellent Poor Fair

Documentation Excellent Good Poor Poor

Risk Management Poor Excellent Good Good

DETAILED JUSTIFICATION

2. 🔍 Detailed Justification

A) Project Characteristics Favoring Incremental Model:

📦 Natural Modularity:

The packet sniffer has distinct functional modules that can be developed independently:

Core Capture Engine: Network interface access and raw packet capture
Protocol Parser: Decoding different network protocols
Filter System: Packet filtering and search functionality
User Interface: Display and interaction components
Data Export: File saving and export features

⏰ Academic Timeline Constraints:

The incremental approach fits perfectly with academic requirements:

Semester Duration: 10-12 weeks allows for 5 clear increments
Milestone Submissions: Each increment provides demonstrable progress
Professor Reviews: Regular evaluation at increment completion
Student Learning: Gradual skill building through increments

B) Implementation Strategy:

Increment Duration Features Deliverable

1
Weeks 1-
2

Basic packet capture,
Network interface selection

Command-line tool that
captures and displays raw
packets

2
Weeks 3-
4

TCP/UDP/ICMP parsing,
Header extraction

Enhanced tool showing
protocol information

3
Weeks 5-
6

Basic filtering, IP/Port
filters

Packet sniffer with filtering
capabilities

4
Weeks 7-
8

File export, Session
management

Complete CLI packet
analyzer

5
Weeks 9-
10

Graphical interface,
Educational features

Full GUI packet sniffer with
learning features

3. ❌ Why Other Models Are Less Suitable:

🚫 Waterfall Model - Not Suitable:

Late Testing Risk: Network programming is complex and requires early testing
No Early Feedback: Students need continuous guidance and evaluation
Integration Challenges: Network protocols have many edge cases
Inflexible Timeline: Academic deadlines don't allow for major revisions

🚫 Agile Model - Not Optimal:

Overhead for Students: Sprint ceremonies consume valuable development time
Limited Customer Access: Professor availability is restricted
Documentation Requirements: Academic projects need formal documentation
Scope Creep Risk: Students may add unnecessary features

🚫 Evolutionary Model - Not Practical:

Time Constraints: Academic semester is too short for multiple evolution cycles

Resource Limitations: Students lack experience for rapid prototyping
Unclear Requirements: Educational objectives are well-defined
Assessment Challenges: Difficult to grade evolving prototypes

4. 🎯 Expected Benefits of Incremental Approach:

✅ Academic Benefits:

Progressive Learning: Students
build skills incrementally
Regular Assessment: Professors
can evaluate at each stage
Risk Mitigation: Problems
identified early in development
Motivation: Working software at
each increment
Teamwork: Clear division of
responsibilities

✅ Project Benefits:

Quality Assurance: Testing at
each increment
Modular Design: Clean,
maintainable architecture
Early Functionality: Basic
packet capture available early
Flexible Scope: Advanced
features can be adjusted
Documentation: Incremental
documentation development

5. 📋 Success Metrics for Incremental Development:

Increment Completion Rate: Target 100% on-time completion
Code Quality: Maintain consistent quality across increments
Integration Success: Smooth integration between increments
Learning Objectives: Meet educational goals at each stage
Team Collaboration: Effective teamwork and communication

CONCLUSION

📝 Summary of Findings:

This experiment provided comprehensive analysis of four major software process models and their
practical applications. Through detailed examination of the Waterfall, Incremental, Evolutionary,
and Agile models, we identified their strengths, weaknesses, and suitable application domains.

🎯 Key Learning Outcomes:

Model Characteristics: Each process model has distinct characteristics suited for specific
project types
Application Domains: Different industries and project types benefit from different
approaches
Selection Criteria: Project constraints, team experience, and requirements stability are key
factors
Trade-offs: Every model involves trade-offs between flexibility, documentation, risk, and
timeline

🔍 Case Study Analysis:

The packet sniffer project analysis demonstrated the importance of matching process models to
project characteristics. The Incremental Model emerged as the optimal choice due to:

Natural modularity of the packet sniffer architecture
Academic timeline and assessment requirements
Student team capabilities and learning objectives
Risk management needs for technical challenges

🎓 Professional Implications:

Understanding process model selection is crucial for software engineering success. This analysis
provides a framework for evaluating and selecting appropriate development methodologies in real-
world scenarios.

📚 Future Applications:

The knowledge gained from this experiment will be valuable in:

Industrial software development projects
Academic research and development
Project management and planning
Team leadership and technical decision making

REFERENCES

1. Sommerville, Ian. Software Engineering. 10th Edition, Pearson Education Limited, 2015. ISBN:

978-0133943030

2. Pressman, Roger S., and Bruce R. Maxim. Software Engineering: A Practitioner's Approach.

8th Edition, McGraw-Hill Education, 2014. ISBN: 978-0078022128

3. Beck, Kent, Mike Beedle, Arie van Bennekum, et al. "Manifesto for Agile Software

Development". 2001. Available: https://agilemanifesto.org/

4. Boehm, Barry W. "A Spiral Model of Software Development and Enhancement". Computer, vol.

21, no. 5, pp. 61-72, May 1988. DOI: 10.1109/2.59

5. Royce, Winston W. "Managing the Development of Large Software Systems". Proceedings of

IEEE WESCON, vol. 26, pp. 1-9, August 1970.

6. Larman, Craig, and Victor R. Basili. "Iterative and Incremental Development: A Brief History".

Computer, vol. 36, no. 6, pp. 47-56, June 2003. DOI: 10.1109/MC.2003.1204375

7. Kurose, James F., and Keith W. Ross. Computer Networking: A Top-Down Approach. 7th

Edition, Pearson Education, 2016. ISBN: 978-0133594140

8. Stevens, W. Richard. TCP/IP Illustrated, Volume 1: The Protocols. 2nd Edition, Addison-

Wesley Professional, 2011. ISBN: 978-0321336316

9. Schwaber, Ken, and Jeff Sutherland. "The Scrum Guide: The Definitive Guide to Scrum".

Scrum.org, November 2020.

10. IEEE Computer Society. "IEEE Standard for Software Life Cycle Processes". IEEE Std 12207-

2017, 2017. DOI: 10.1109/IEEESTD.2017.8100771

📋 END OF DOCUMENT 📋

Software Engineering Laboratory - Experiment 1

Applications of Process Models & Packet Sniffer Case Study

Lokmanya Tilak College Of Engineering (LTCE)

Mumbai University | CSE (IoT & CSBT) | Academic Year 2025-26

Group Members:

1. Raj Dubey (Roll No: 11) 2. Yash Maurya (Roll No: 25)

3. Piyush Kanojiya (Roll No: 23)

Date: August 11, 2025

